Tyler

- 10 year old M(N) Doodle
- Acute onset vomiting x 2
- Lethargic on walk this morning

Tyler

- T 99.5°F
- HR 140 bpm
- RR 40
- Pale mm
- CRT 2 seconds
- Cool extremities
- Weak femoral pulses with deficits

Tyler’s ECG

Abdominocentesis

- 5 – 7 ml/kg

Stages of Shock

<table>
<thead>
<tr>
<th></th>
<th>Compensatory 15-30%</th>
<th>Early Decompensatory 30-40%</th>
<th>Late Decompensatory > 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>Increased</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Mucous Membranes</td>
<td>Hyperemic</td>
<td>Pale</td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>Rapid</td>
<td>Prolonged</td>
<td></td>
</tr>
<tr>
<td>Pulse Quality</td>
<td>Normal to bounding</td>
<td>Normal to decreased</td>
<td>Weak</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>Normal to increased</td>
<td>Normal to decreased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Core Temperature</td>
<td>Normal</td>
<td>Normal</td>
<td>Decreased</td>
</tr>
</tbody>
</table>

Oxygen Delivery

\[\text{DO}_2 = Q \times C_aO_2 \]

\[Q = \text{Heart Rate} \times \text{Stroke Volume} \]

\[C_aO_2 = [1.34 \times \text{Hb} \times S_aO_2] + [0.003 \times P_aO_2] \]

Rapid Volume Resuscitation

- Start with \(\frac{1}{4} \) of the calculated “shock” dose, then reassess perfusion parameters
 - Heart rate
 - Blood pressure
 - Capillary refill time
 - Urine output

Treatment to Improve Oxygen Delivery

- Fluids
- Antiarrhythmics
- Crystalloids
- Colloids

\[C_aO_2 = [1.34 \times \text{Hb} \times S_aO_2] + [0.003 \times P_aO_2] \]

- Inotropes
- Whole Blood
- Packed RBC’s
- Oxygen supplementation
Rapid Volume Resuscitation

- Helpful Hint
 - For dogs, take their body weight in POUNDS, and add a zero
 - This equals ¼ shock dose of fluids!

Small Volume Resuscitation

- Colloidal administration 5 ml/kg bolus
- Reassessment of perfusion parameters
- Used in:
 - Head trauma or closed cavity hemorrhage
 - Pulmonary contusions

Circulation – Fluid Therapy

- Large (shock) bolus dosing of crystalloid, hypertonic or colloid fluids can raise pressures to supernormal levels
- Newly formed clots to break off damaged vessels
- Dilutional coagulopathy

Dysrhythmias

Treatment of Ventricular Tachycardia

- 1 – 2 mg/kg IV over 1 – 2 minutes followed by 50 – 100 mcg/kg/min IV CRI

- PCV/TS
- Cytology?
- 163 peritoneal effusions
- Malignancy found 18%, > ½ carcinoma
- 64% sensitivity

* Presence of peritoneal effusion signifcantly associated with malignancy (p = 0.0007)

- Eliminating 1 view would change diagnosis in 12-15% of cases
- Both laterals more sensitive than 1 lateral and DV or VD

Use of radiography in combination with computed tomography for the assessment of noncardiac disease in the dog and cat. Vet Radiol Ultrasound 46(2):114-1221, 2005.

- 28 dogs, 5 cats
- Location/extent pathology, mediastinal involvement
- 4/33 no new information
- Change in diagnosis 16/33 (48%)

- 71 dogs with hemoabdomen, splenic mass and required transfusion
- 54/71 malignancy
- 50/54 (92.6%) HSA
- Lower platelet count
- Lower TS
- Negative predictive values of above not great

- 83 dogs with hemoabdomen
- 90% of bleeding isolated to spleen
- Massive transfusion negative prognostic indicator
- Splenic hemorrhage positive predictive indicator
- “Surgical intervention, regardless of etiology, resulted in discharge from hospital in 84% of dogs”.

Hemoabdomen Study

- Dogs with hemoabdomen and splenic mass
- Vascular endothelial growth factor (VEGF)
- Thymidine kinase
- Abdominal fluid
- Peripheral blood
- Splenic biopsy
“The Talk”

- Presence of hemoabdomen = malignancy 65-80%

Tyler

- T 99.5°F
- HR 110 bpm
- RR 40
- Pale mm
- CRT 1.5 seconds
- Warm extremities
- BP 100/60 (73)
- ECG Normal

Balanced Anesthesia

- Opioid + Benzodiazepene ± Etomidate

<table>
<thead>
<tr>
<th>Anesthetic</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl</td>
<td>5-10 mcg/kg IV</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.2-0.5 mg/kg IV</td>
</tr>
<tr>
<td>Diazepam</td>
<td>0.4 mg/kg IV</td>
</tr>
<tr>
<td>Etomidate</td>
<td>0.5 – 1.0 mg/kg IV</td>
</tr>
</tbody>
</table>

To surgery......

Surgical Indications for the Hemoabdomen

- failure to achieve stability of patient
- continued evidence of bleeding
- radiographic evidence of pneumoperitoneum, hernia or mass effect
- owner aware of prognosis
Preoperative concerns

- Hypovolemic shock
- Anemia
- Cardiac arrhythmias
- Coagulopathy
- Metastatic disease
- Concurrent injury if trauma indicated

Hemoabdomen – Surgical Preparation

- Prepare large area of ventral abdomen (xiphoid to pubis); paracostal access; prepare thoracic and inguinal regions if indicated
- Rapid access to the abdominal cavity
- An assistant, suction capability, radioopaque sponges and electrosurgical instruments are ideal

Hemoabdomen – Principles of Surgery

- Ventral midline incision
- Examine spleen, liver and kidneys first; if source of bleeding not found, proceed with systematic abdominal exploration

Hemoabdomen – Controlling hemorrhage

- Direct pressure to peripheral vessels
- Pack with laparotomy sponges
- Pringle maneuver
- Direct pressure to aorta (assistant)
- Aortic cross clamping
 - bulldog clamps
 - Rumel tourniquet

Hemoabdomen - Hemostasis Aids

- Suture
- Surgical staples
 - Thoracoadominal stapler (TA)
 - Ligate and divide stapler (LDD)
 - Surgiclip/Hemoclip
- Vessel sealing devices
 - Ligasure
 - EndSeal
- Hemostatic agents
 - Gelfoam
 - Surgicel
 - RAPID powder
 - Gels

Hemoabdomen - Spleen

- Lacerations can be sutured, omentalized or covered with Surgicel
- Total splenectomy most frequently done for both trauma and masses
Total splenectomy

- Most common
- Neoplasia
- Trauma
- Torsions
- Thrombosis

Arterial blood supply

- Splenic artery: 3-5 branches
- Supply to the left limb of the pancreas
- Short gastric arteries
- Left gastroepiploic artery

Total Splenectomy - Surgical technique

- Ventral midline incision
- Exteriorize the spleen
- Double ligate vessels at splenic hilus
- Preserve the short gastrics if possible

Splenectomy – Ligate Divide Stapler (LDS)

- Easy to use
- Faster than suture
- Staples are insecure and often slip
- Expensive compared to suture or hemoclips
- Comparable cost to Ligasure per use

Splenectomy using Hemoclips

- Easy to place
- Two on artery on side to stay
- One on vein on side to stay
- Relatively cheap compared to TA staples and vessel sealing
- Requires a lot hemoclips
- Relatively secure

Splenectomy - Ligasure

- Efficient
- Fast
- Seals vessels up to 7mm
- Minimal lateral thermal spread (<2mm)
- Expensive
Hemoabdomen - Liver

- Repair of superficial lacerations with suture or Gelfoam
- Liver lobectomy indicated for bleeding masses or irreparable hemorrhage isolated to a single lobe

Partial Liver Lobectomy

- Indicated when disease involves only a portion (peripheral) of the liver lobe

Complete Liver lobectomy

- Indicated for bleeding masses or irreparable hemorrhage isolated to a single lobe
- Double ligation of blood vessels and biliary ducts near the hilus
- Thoracoabdominal (TA) stapler
- Ligasure
- Finger fracture/suture

Liver lobectomy – thoracoabdominal (TA) stapler

Liver lobectomy - TA stapler

Hemoabdomen - kidney

- Direct pressure and repair attempted
- Nephrectomy reserved for uncontrollable hemorrhage, avulsion and neoplasia
Hemoabdomen – adrenal

- Rare
- Typically malignant when causing hemorrhage
- Difficult to control hemorrhage until adrenalectomy is complete

Thorough abdominal exploration is indicated once hemorrhage is controlled.

Prognosis is dependent on underlying etiology

<table>
<thead>
<tr>
<th>Traumatic</th>
<th>HEMOPERITONEUM</th>
<th>Non-traumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blunt Trauma (HBC)</td>
<td>Penetrating trauma</td>
<td>Neoplasia</td>
</tr>
<tr>
<td>Spleen</td>
<td>Liver</td>
<td>Kidney</td>
</tr>
<tr>
<td>Mesenteric avulsion</td>
<td>Splenic</td>
<td>Hepatic</td>
</tr>
<tr>
<td>Renal Adrenal</td>
<td>Intestinal</td>
<td>Congenital</td>
</tr>
<tr>
<td>Toxin</td>
<td>DIC</td>
<td>Hepatobiliary disease</td>
</tr>
<tr>
<td>GDV</td>
<td>Splenic</td>
<td>Liver lobe torsion</td>
</tr>
</tbody>
</table>

Prognosis is dependent on underlying pathology

- Traumatic
 - Overall survival rate for dogs with severe traumatic hemoperitoneum was 57% in Mongi et al, JAAHA, 1995; After excluding those that were euthanized, survival rates for those treated medically and surgically were 75% and 67% respectively. Larger animals had a better prognosis. Presenting clinical signs, PCV (peripheral and effusion), pulse rate, site of intraabdominal hemorrhage and age did not correlate with survival.
 - Nodular splenic disease
 - 2 month post-op survival rate was 83% for dogs with non-neoplastic related hematomas and 31% for dogs with hemangiosarcomas (HSA) with or without associated hematomas, Spangler, Atlas, J Vet Intern Med, 1997
 - Median survival time of dogs with grade I or II splenic HSA treated by splenectomy alone was 86 days (range 14-470 days); Wood et al, JAAHA, 1998
 - HSA splenectomy alone results in median survival times of 19-65 days; dogs treated with surgery and chemotherapy have a median survival time of 143 days; Chun, Compendium, 1999

To the oncologist…..

Now what?

- Recheck 10-14 days after surgery
 - Remove sutures
 - Discuss diagnosis and overall prognosis
 - Review treatment options
- Important not to start injectable chemotherapy too soon after surgery
What types of neoplasia are seen with hemoabdomen?

- Splenic (MOST COMMON)
 - Hemangiosarcoma – prevalence of hemoabdomen higher in dogs with HSA compared to those with other tumors (80% vs. 20%)
 - Splenic stromal sarcomas (leiomyosarcoma, fibrosarcoma, other STS, undifferentiated sarcomas)
 - Fibrohistiocytic nodules
 - Lymphoma
 - Other
- Hepatic
 - Hepatocellular carcinoma (massive)
 - Hemangiosarcoma
 - Other (lymphoma, carcinomas, etc)
- Renal
 - Hemangiosarcoma
 - Other sarcomas
 - Renal cell carcinoma
 - Nephroblastoma
- Adrenal
 - Pheochromocytoma
 - Adrenocortical tumors
- Intestinal

Distribution of splenic masses with or without hemoperitoneum

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifocal tumor</td>
<td>67.6%</td>
</tr>
<tr>
<td>Hemangiosarcoma</td>
<td>15.4%</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>5.9%</td>
</tr>
<tr>
<td>Hematomas</td>
<td>3.7%</td>
</tr>
<tr>
<td>Renal tumors</td>
<td>2.4%</td>
</tr>
<tr>
<td>Heather</td>
<td>2.0%</td>
</tr>
<tr>
<td>Thoracic masses</td>
<td>0.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

What if histopathology is equivocal?

- Request immunohistochemistry
 - Hemangiosarcoma
 - von Willebrand’s Factor (factor VIII-related antigen)
 - CD31 (platelet endothelial cell-adhesion molecule – PECAM)
 - Sarcoma
 - Vimentin positive, negative for other markers
 - Round cell tumor
 - Lymphoma – CD3 (T-cell) or CD79a (B-cell) positive
 - Histiocytic sarcoma – CD18 positive, negative for other markers
 - Plasma cell – MUM1, CD79a, CD20, Pax5
 - Carcinoma
 - Cytokeratin
- REMEMBER TO SUBMIT ENTIRE SPLEEN!!!

Baseline Testing

- Is (re-)staging necessary?
 - Thoracic radiographs
 - Abdominal ultrasound
 - Echocardiogram
 - In dogs where echo was performed at diagnosis, only 3% had concurrent right atrial mass
 - Pre-chemotherapy screen
 - Biomarkers and monitoring treatment response
 - Thymidine Kinase
Thymidine kinase 1

- What is TK1
 - Cytosolic enzyme involved in DNA synthesis
 - Expression restricted to proliferating cells
- Use of TK1
 - Screening test for malignancy
 - Serum TK1 was significantly higher in HSA/other malignancy dogs vs. normal dogs
 - NOT different compared to dogs w/ benign splenic diseases
 - Very low TK1 (<1.55u/L) helps rule out splenic malignancy (especially HSA – 0/6 dogs had TK1 <1.55u/L)
 - Very high value does not rule in hemangiosarcoma!
 - Monitoring during therapy

Hemangiosarcoma – Systemic Tx options

- Injectable chemotherapy
- Immunotherapy
- Metronomic chemotherapy
- Alternative therapies
 - I’m Yunnity
 - Yunnan Baiyao

Splenic HSA – Treatment Options

- Splenectomy alone
 - MST 2-3 months (6.25% alive at 1 year)¹
- Splenectomy + injectable chemotherapy
 - Adriamycin alone
 - Q3 week protocol → MST 6 months²
 - Stage II dogs → 2 months
 - Q2 week protocol (dose intensified)³
 - Stage I dogs → 6 months
 - Stage II dogs → 3 months
 - With Gemcitabine → MST 8 months
 - Stage II dogs → 5 months
 - Pegylated liposomal encapsulated Adriamycin
 - No improved survival compared to free Adriamycin³
 - Intraperitoneal administration²
 - MST = 4.4 months
 - With Gemcitabine → MST 6 months
 - Stage II dogs → 3.4 months
 - Stage II dogs → 4 months

Splenic HSA – Treatment Options

- Splenectomy + injectable chemotherapy (cont.)
 - Adriamycin + cyclophosphamide
 - MST 5 months²
 - VAC (Vincristine, Adriamycin, cyclophosphamide)
 - MST 6 months¹
 - Stage III dz?³
 - ORR (CR + PR) → 86%
 - MST 6.5 months (included SQ HSA; when evaluating all splenic cases MST 4.7 months)
 - CR → MST 8 months
 - PR → MST 4.6 months
 - SD → MST 3.5 months

Splenic HSA – Treatment Options

- Splenectomy + immunotherapy +/- injectable chemotherapy
 - Mixed bacterial vaccine → MST 3m (4m with chemo)³
 - L-MTP-PE + Adriamycin/cyclophosphamide → MST 9 months²

Splenic HSA – Treatment Options

- Splenectomy alone
 - MST 2-3 months (6.25% alive at 1 year)¹
- Splenectomy + injectable chemotherapy
 - Adriamycin alone
 - Q3 week protocol → MST 6 months²
 - Stage II dogs → 2 months
 - Q2 week protocol (dose intensified)³
 - Stage I dogs → 6 months
 - Stage II dogs → 3 months
 - With Gemcitabine → MST 8 months
 - Stage II dogs → 5 months
 - Pegylated liposomal encapsulated Adriamycin
 - No improved survival compared to free Adriamycin³
 - Intraperitoneal administration²
 - MST = 4.4 months
 - With Gemcitabine → MST 6 months
 - Stage II dogs → 3.4 months
 - Stage II dogs → 4 months

References:

¹ Thamm et al, VCO 2012
² Hamner et al, JVIM 2007
³ Sorenmo et al, JVIM 2007
⁴ Sorenmo et al, JVIM 1993
⁵ Kim et al, JAVMA 2007
⁶ Payne et al, VCO 2003
⁷ Dervisis, AAHA 2011
⁸ Alvey et al, JVIM 2011
⁹ Teske et al, VCO 2012
¹⁰ Derme et al, VCO 2012
¹¹ Sorenmo et al, JVIM 2007
¹² Brown et al, JAVMA 1985
¹³ Vail et al, Clin Cancer Res 1995
Splenic HSA – Treatment Options

- Splenectomy + metronomic chemotherapy
 - What is metronomic chemotherapy?
 • Low dose CONTINUOUS therapy (different from maximum tolerated dosing)
 • Anti-angiogenic effects
 - Targets tumor vasculature to starve tumors of oxygen and nutrients
 - Immunomodulatory • decreases Tregs to allow immune system to attack cancer cells
 • Options in veterinary medicine
 - Low dose cyclophosphamide (15mg/m2 PO SID)¹
 » Watch for sterile hemorrhagic cystitis!
 - Low dose chlorambucil
 - Low dose CCNU
 - NSAIDs (+/- MMP inhibitors)
 - Tyrosine kinase inhibitors (ie Palladia)

 ¹ Burton et al, JVIM 2011.

Splenic HSA – Treatment Options

- Alternative therapies
 - Splenectomy + I’m Yunnity¹
 • Mushroom (Coriolus versicolor)
 • Active agent = polysaccharopeptide (PSP)
 - Cell cycle arrest and tumor cell death
 - Boosts immune cell proliferation
 - Alleviates chemotherapy symptoms
 - Enhances tumor infiltration by dendritic cells and CD8+ T-cells
 • Patients treated with 100mg/kg/d
 - Prolonged MST compared to lower dose (6.6 months)
 - No side effects, although large number of pills in larger breed dog (400mg pill size)

 ¹ Brown et al, Evidence-based comp and alt med 2012

Splenic HSA – Treatment Options

- Alternative therapies
 - Yunnan Baiyao¹
 • Chinese herbal supplement
 • Utilized for anti-inflammatory, hemostatic, wound healing, and pain relieving properties
 • Used to control bleeding in dogs
 • In vitro study • causes HSA cell death
 • Dosing
 - <15mg = 1 capsule BID
 - 15-30kg = 2 capsules BID
 - >30kg = 2 capsules TID

 ¹ Wirth et al, VCO 2014

Splenic HSA – Treatment Options

- Other splenic tumors – treatment and prognosis
 - Lymphoma
 - High grade
 • Multicentric
 • Hepatosplenic
 - Marginal zone lymphoma • prolonged MST with surgery alone
 - Splenic stromal sarcomas
 - Prognosis depends on mitotic rate
 - Benefits of adjuvant chemotherapy unknown
 - Fibrohistiocytic nodules
 - Prognosis depends on grade
 - Benefits of adjuvant chemotherapy unknown

OTHER SPLENIC TUMORS
QUESTIONS?