Collapsing Trachea: Handling an Uncooperative Airway
Megan Morgan, VMD, DACVIM
October 27, 2013

Lecture Outline
- Etiology of tracheal collapse
- Diagnosis of tracheal collapse
- Medical management of tracheal collapse
- Surgical management of tracheal collapse
- Management of tracheal collapse with interventional radiology

Tracheal collapse etiology
- Tracheobronchial malacia—degenerative condition in which the tracheal and bronchial cartilages lose cellularity and have deficient glycoprotein and glycosaminoglycan content
- Predisposed breeds are generally toy breeds: Yorkshire Terrier, Pomeranian, Miniature Poodle, Toy Poodle, Chihuahua, Pug
- Average age at diagnosis is 7 years
- Clinical signs: “goose honking” cough, stridor, exercise intolerance, respiratory distress due to airway obstruction
Grading of tracheal collapse

- Grade 1—Minimal collapse encompassing about 25% of the airway diameter
- Grade 2—Moderate collapse encompassing about 50% of the airway diameter
- Grade 3—Severe collapse encompassing about 75% of the airway diameter
- Grade 4—Complete collapse (no visible airway remaining)

Medical management of tracheal collapse

- Medical management is effective in about 70% of cases
 - Cough suppressants:
 - Hydrocodone 0.25 mg/kg BID-TID
 - Butorphanol 0.1-0.3 mg/kg PO BID-TID
 - Difenoxylate/atropine (Lomotil) 0.2-0.5 mg/kg PO BID-TID
 - Anti-inflammatories:
 - Prednisone 0.25-0.5 mg/kg PO BID
 - Sedatives:
 - Acepromazine 0.5-2 mg/kg PO BID-TID (use sparingly!)
 - Weight Loss
 - Use of a harness rather than a neck lead
 - Bronchodilators (questionable efficacy)
 - Theophylline/aminophylline 10 mg/kg PO BID
 - Terbutaline 1.25-5 mg PO BID-TID

Surgical management of tracheal collapse

- Extraluminal tracheal rings
- Surgical placement of extraluminal tracheal rings
Surgical management of tracheal collapse

- **Pros**
 - No risk of fracture
 - Long-lasting
 - Minimal risk of granulation tissue formation

- **Cons**
 - Only addresses cervical and possibly thoracic inlet tracheal collapse
 - Requires surgical intervention with potential complications
 - Potential damage to blood vessels and nerves (e.g., recurrent laryngeal nerve)
 - Significant risk of laryngeal paralysis approximately 20% of cases

Intraluminal tracheal stent placement

- **Types of tracheal stents**
 - Self-expanding
 - Stainless steel withstands 0.3% deformation
 - Nitinol withstands 10% deformation
 - Balloon expandable—no longer used due to stent migration (resulting from stent recoil following balloon deflation)
 - Imaging during stent deployment
 - Fluoroscopy
 - Bronchoscopy
 - Digital radiography

- **Pros**
 - Minimally invasive
 - Rapid placement with minimal anesthetic time
 - 95% immediate improvement in clinical signs, 90% long-term improvement in clinical signs
 - No risk of laryngeal paralysis

- **Cons**
 - Potential for stent migration (if size chosen is too small)
 - Potential for stent fracture, particularly if patient continues to cough post-stent placement
 - Potential for granulation tissue formation

Trachoscopy of a patient with granulation tissue formation following tracheal stent placement
Intraluminal tracheal stent placement

 – Survival times ranged from 1 to >48 months (study end)
 – 75% of patients lived >1 year post-stent
 – 58.3% of patients lived >2 years post-stent
 – Encountered complications in a significant number of patients
 • 7/12 bacterial tracheitis
 • 5/12 stent fracture
 • 2/12 granulation tissue formation
 • 1/12 stent migration
 – Of the 9 patients that died within the study period, 5 died of causes related to tracheal collapse

Tracheal collapse: One clinician’s thoughts

• ALWAYS attempt medical management prior to considering tracheal stent placement or placement of extraluminal rings
• Stent placement and extraluminal ring placement DO NOT remove the need for medications
• Mainstem bronchial collapse is not treated with a stent. Therefore, if bronchoscopy reveals bronchial collapse that is worse than the tracheal collapse, stent/ring placement should be questioned
• Attempt to clear pneumonia (especially if severe) prior to placement of a tracheal stent or extraluminal rings
• Tracheal collapse is a progressive disease, and patients need to be monitored carefully.
• Disease progression can be very rapid in some patients.
• Given that the disease is progressive, extraluminal ring placement (which only addresses cervical disease) may not be a good long-term treatment option.
Questions???