PULMONARY IMAGING:
GETTING THE MOST INFORMATION FROM THORACIC RADIOGRAPHS
Peter Scrivani, DVM, DACVR
Cornell University College of Veterinary Medicine, Ithaca, NY

Outline

• Pulmonary anatomy
 • Selecting the imaging examination
 • Principles of radiographic interpretation
 • The incompletely expanded lung
 • The fully expanded lung
 • Summary

Pulmonary Anatomy

• 2 lungs
 – Left
 – Right
• 2 “lung fields”
 – Cranioventral
 – Caudodorsal

Dog: Left lung

Pulmonary Imaging

Peter V. Scrivani, DVM
Assistant Professor, Department of Clinical Sciences

Pulmonary Anatomy

• 6 lung lobes
 – Right cranial
 – Right middle
 – Right caudal
 – Accessory
 – Left caudal
 – Left cranial
 • Cranial part
 • Caudal part
• Bronchopulmonary segments

Gross Anatomy

Gross Anatomy

• Trachea
 – Principal bronchi
 • Lobar bronchi
 – Segmental bronchi
 • Bronchi
 • Bronchioles

226111

187515
L LAT R LAT
Radiographic Localization of Lung Disease

- Bronchovascular bundle (conducting zone)
- Pulmonary parenchyma (respiratory zone)
- Pulmonary blood vessels

Gross & Histologic Anatomy

- Lung
 - Lobe
 - Bronchopulmonary segment
 - Secondary pulmonary lobule
 » Pulmonary acinus
 - Primary pulmonary lobe
 - Alveolus
 - Wall (interstitial pattern)
 - Space (alveolar pattern)
Gross & Histologic Anatomy

- Lung
 - Lobe
 - Bronchopulmonary segment
 - Secondary pulmonary lobule
 » Pulmonary acinus
 - Imaging limit
 - Primary pulmonary lobule
 - Alveolus
 - Wall (interstitial pattern)
 - Space (alveolar pattern)

Anatomic Organization of the Lung

Computed tomography of the lung, A pattern approach, 2007, Springer

Pulmonary Interstitium

Connective Tissue

Computed tomography of the lung, A pattern approach, 2007, Springer
Pulmonary Interstitium

Connective Tissue

1. Subpleural space, bronchopulmonary segments, secondary pulmonary lobules, & pulmonary acini
2. Originate at hilum, surrounds bronchovascular structures & alveoli
3. Between the alveoli and capillaries (alveolar wall)

Computed tomography of the lung, A pattern approach, 2007, Springer

Bovine & Canine Lungs

Selecting the Examination

• Orthogonal-view thoracic radiography
 – RLAT and DV Cardiac cases
 – LLAT and VD Respiratory cases
 – Other combinations
• 1-view thoracic radiography
• 3-view thoracic radiography
• Thoracic CT

In small-animals, see lung lesions best in the “up” lung
Other lesions best when placed close to the detector

“Up” lung

195681
Principles of Radiographic Interpretation

- Assuming proper
 - Examination
 - Positioning
 - Exposure
 - No superimposition
 - of collar, wet hair, etc.
Age-related Changes & Body Condition

Principles of Radiographic Interpretation

- Classic pattern approach
 - Interstitial pattern
 - Alveolar pattern
 - Bronchial pattern
 - Vascular pattern
 - Mixed pattern

- Pulmonary patterns are a combination of signs
 - Degree of lung expansion
 - Reduced, normal, or increased
 - The opacity of the lung
 - Increased or decreased
 - Appearance of increased opacity
 - Alveolar, interstitial, bronchial, vascular
 - Macroscopic distribution of altered opacity
 - Cranioventral, diffuse, lobar, focal, etc
 - Additional signs

Incomplete Lung Expansion
Incomplete Lung Expansion

- Often considered as only a technical complication
 - Obscure pathology
 - Spurious pathology
 - Cardiomegaly
 - Increased lung opacity

Inhalation

Exhalation

- Commonly due to normal exhalation
- Can be a component of the disease process
 - Reduced or absent gas exchange
 - Clue to the underlying pathology

Textbook of Veterinary Diagnostic Radiology, 3rd Ed.

Signs of Incomplete Lung Expansion

- Decreased lung size
- Increased opacity
- Lobar sign
- Crowding of ribs
- Air bronchogram sign
- Positive silhouette sign
- Poorly defined margins of vessels
- Mediastinal shift (toward collapse)
- Crowding and reorientation of pulmonary blood vessels

- Compensatory hyperinflation
- Bronchial rearrangement
- Cardiac rotation
- Displacement of diaphragm
- Rounded pulmonary margins
- Displacement of pleural fissures
- Changed location of abnormal structures

Anectasis
- Lungs never expanded

Atelectasis
- Lungs previously expanded then collapsed

Collapse
- Same as atelectasis, but often used when more severe
- Less severity may be indicated by “partial collapse”
Atelectasis or Collapse

- Related to physiology of lung expansion
 - Elasticity
 - Compliance
 - Airway patency
 - Surface tension

Relaxation Atelectasis

- Lung does not expand due to the unopposed tendency for lung to collapse due to elasticity
 - Exhalation
 - Pleural fluid
 - 100% oxygen
 - Pneumothorax
 - Shallow breathing
 - Gravity dependent
 - Space-occupying lesion

Relaxation Atelectasis

0.6-year-old, M, Siberian husky

5-year-old, FS, mixed-breed dog

Obstructive Atelectasis

- Lung not expanded due to absorption of alveolar gas without replacement due to airway obstruction
 - Infectious bronchitis or pneumonia
 - Mucous plugging (eg, asthma)
 - Ciliary dyskinesia
 - Foreign body
 - Neoplasm

Obstructive Atelectasis

186808 13-year-old, FS, DSH Cat
Obstructive Atelectasis

Basal cell carcinoma

186808 13-year-old, FS, DSH Cat

Obstructive Atelectasis

11-year-old, MC, DLH Cat

5-year-old, M, Labrador Retriever
with Chronic Coughing

Compare lung expansion on both laterals

5-year-old, M, Labrador Retriever
with Chronic Coughing

Compare lung expansion on both laterals

Bronchial Foreign Bodies

- Visible foreign body
- No radiographic sign
- Obstructive atelectasis
 - Chronic
 - Complete obstruction
- Obstructive emphysema
 - Acute
 - Partial obstruction

Cat found dead in cage
Tracheal foreign body (kibble)

Feline Asthma

194119 Collapsed & hyperinflated lung lobes
Cicatrizing Atelectasis

- Lungs do not increase in volume under normal respiration due to reduced compliance
 - Chronic immune-mediated lung disease
 - Chronic idiopathic fibrosis
 - Radiation pneumonitis
 - Chronic pneumonia

Compliance

- Relationship between volume & pressure

Cicatrizing Atelectasis

14-year-old, MC, West Highland White terrier with chronic idiopathic pulmonary fibrosis

Pulmonary Fibrosis

140648 Unspecified age, FS, mixed-breed dog

Restrictive Pleuritis

Adhesive Atelectasis

- Lungs do not expand due to lumen surfaces of alveoli sticking from surfactant abnormality
 - Neonatal respiratory distress syndrome
 - Acute respiratory distress syndrome
 - Pulmonary thrombosis

Surfactants (surface active agents) are compounds that lower the surface tension between two liquids or between a liquid and solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.
Adhesive Atelectasis

Pre-mature, F, Thoroughbred horse

Ventilation and Perfusion

- Goal is to match ventilation of air (V) with the perfusion of blood flow (Q) to the lung
 - Ventilation perfusion quotient (V/Q) is the amount of air that is breathed in and perfused into the blood
- V/Q affected by
 - Gravity
 - Normal physiology
 - Disease

Lung Zones

1. Zone 1: V > Q
 - Hypotension
 - Hyperexpanded alveoli
2. Zone 2: V = Q
 - Normotensive
 - Normally expanded
3. Zone 3: V < Q
 - Hypertension
 - Collapsed alveoli

Gravity Affects V/Q

- Zone 1: V > Q
- Zone 2: V = Q
- Zone 3: V < Q

Physiologic Regulation of V/Q

- Normal breathing = tidal breath
 - Half of the alveoli are normally collapsed
- Improve V/Q across lung zones
 - Take a deep breath
 - Hypoxic vasoconstriction
 - The alveoli that are not well ventilate stimulate arteriole vasoconstriction to those alveoli and increases blood flow to the rest of the lung
 - Reduces size of Zone 3
 - Increases size of Zone 2

8-year-old, F, Golden Retriever
Atelectasis

4-year-old, F, Saanan Goat
Blood Pooling
Hypoxic Vasoconstriction

- Normal Lungs
 - Only well ventilated alveoli receive blood flow
 - Poorly ventilated alveoli are not perfused

1. Lung Zone
 - V > Q
2. V = Q
3. V < Q

Hypoxic Vasoconstriction

- Pulmonary Inflammation
 - Increased vasodilation
 - Perfusion to non-ventilated lung
 - V/Q mismatch
 - Decreased oxygen saturation
 - "Functional R-L shunt"

Atelectasis

- Can be a technical complication
- Can cause decreased V/Q
 - An important component of the disease process due to reduced gas exchange
 - A source of "shunt" in anesthetized patients
 - Hypoxic vasoconstriction ineffective in anesthesia

Atelectasis as a Diagnostic Clue

- Indicator of lung disease and process
- Differentiating types of atelectasis
 - Not always possible
 - Regional vs diffuse
 - Acute vs chronic

The Fully Expanded Lung
Importance of Lung Size

- Altered Lung Opacity
 - Reduced Size
 - Normal-to-Increased Size
- Technical Complication
 - Incidental
 - Obscurred Pathology
 - Misidentified Pathology

The Fully Expanded Lung

- The opacity of the lung
- Appearance of increased opacity
- Macroscopic distribution of altered opacity

Lung Opacity

- Decreased
- Normal
- Increased

Decreased Lung Opacity

- Classic description
 - Interstitial pattern
 - Alveolar pattern
 - Bronchial pattern
 - Vascular pattern
 - Mixed pattern

Appearance of Increased Lung Opacity

Hypovolemia
Appearance of Increased Lung Opacity

- **Classic description**
 - Interstitial pattern
 - Alveolar pattern
 - Bronchial pattern
 - Vascular pattern
 - Mixed pattern

- **Variable terminology**
 - Interstitial
 - Unstructured
 - Structured
 - Nodular
 - Reticular
 - Alveolar
 - Alveolointerstitial
 - Airspace

Disease of Pulmonary Blood Vessels

- **Vascular pattern**
 - Pulmonary artery enlargement
 - Pulmonary venous congestion
 - Pulmonary over-perfusion

Disease of the Pulmonary Parenchyma

- **Classic description**
 - Interstitial pattern
 - Alveolar pattern

 - Clear glass
 - Ground glass
 - Opaque glass

- **Respiratory Zone**

- **Terms**
 - Fully aerated
 - Partially aerated
 - Void of air

Terms apply to incompletely and fully inflated lungs

Fleischner Society: Glossary of Terms for Thoracic Imaging

In all 3 examples, the lungs are fully expanded.
Disease of the Pulmonary Parenchyma

Relates to the ability to see the pulmonary blood vessels

Ground-glass opacity
Consolidated

Atelectasis

Consolidated Lung
(Pulmonary Blood Vessels Obscured)

Without air bronchograms
With air bronchograms

Groundglass Opacity vs. Consolidation

• Due to differences in lung density
 – Important for patient management
 – Defined by how much air is displaced from lungs
 • Filling the alveolar spaces with fluid or cells
 • Filling the alveolar walls with fluid or cells
 • Partial or complete collapse
 • Increased blood flow

Air Is Displaced From The Lungs By

A. Normal lung
B. Atelectasis
C. Hyperemia
D. Thick interstitium
E. Filled alveoli
F. Thick alveolar wall & filled alveolar space

Attenuation of the voxel or X-ray path
Acute Respiratory Distress Syndrome

- Lung inflammation can cause acute lung injury (ALI)

Lung Inflammation

- Inhaled
 - Burns
 - Infections
 - Chemicals
- Hematogenous spread of inflammatory mediators
 - Ischemic gut
 - Infection elsewhere

Lung is "first stop" for inflammation elsewhere in the body

Lung Inflammation

- Acute respiratory failure
- Chronic respiratory failure

Pulmonary Pathophysiology

- Acute respiratory failure
 - Leaky capillaries & vasodilation
 - Pulmonary edema
 - Decreased diffusion/hypoxia
 - Flooding of alveoli
 - V/Q mismatch (R-L shunt)
 - Decreased surfactant
 - Decreased compliance
- Chronic respiratory failure
 - Fibrosis
 - Decreased diffusion
 - Decreased compliance

Pulmonary Pathophysiology

- Acute respiratory failure
 - Leaky capillaries & vasodilation
 - Pulmonary edema
 - Decreased diffusion/hypoxia
 - Flooding of alveoli
 - V/Q mismatch (R-L shunt)
 - Decreased surfactant
 - Decreased compliance
- Chronic respiratory failure
 - Fibrosis
 - Decreased diffusion
 - Decreased compliance

Neutrophil influx damages Type II pneumocytes
Pulmonary Pathophysiology

- Acute respiratory failure
 - Leaky capillaries & vasodilation
 - Pulmonary edema
 - Decreased diffusion/hypoxia
 - Flooding of alveoli
 - V/Q mismatch (R-L shunt)
 - Decreased surfactant
 - Decreased compliance
- Chronic respiratory failure
 - Fibrosis
 - Decreased diffusion
 - Decreased compliance

It is Understandable

- Why lung patterns are commonly thought to refer to the microscopic localization of lung lesions
 - Interstitial pattern
 - Alveolar pattern
- However, the appearances relates to severity of air displacement and not the underlying cause of disease

Compare, For Example

- Left congestive heart failure causes increased hydrostatic pressure
 - Interstitial pattern
 - Leaky capillaries & vasodilation
 - Alveolar pattern
 - Flooding of alveoli

Disease of the Pulmonary Parenchyma

- Groundglass opacity or interstitial pattern
 - Affected lungs are partially aerated
- Consolidation or alveolar pattern
 - Affected lungs are void of air

What the pathologist calls "interstitial disease" is different from what a radiologist calls an "interstitial pattern." Suter & Lord

Disease of the Bronchovascular Bundle

- Classic description
 - Bronchial pattern

174941
Disease of the Bronchovascular Bundle

- Classic description
 - Bronchial pattern

Conducting Zone
Differentiate bronchovascular disease from an air bronchogram (parenchymal disease)

Bronchovascular Pattern

- Bronchovascular bundle
 - Bronchi
 - Arteries
 - Veins
 - Lymphatic vessels

- Bronchiolovascular bundle
 - Bronchioles
 - Arterioles
 - Venules
 - Lymphatic vessels

Blastomycosis

214640

10-year-old, FS, German Shepherd

Bronchiectasis

202189

6-weeks later lung and bronchus are better aerated
Some Take-Home Messages

• The different appearances of increased opacity differentiates:
 - Bronchovascular diseases
 - Parenchymal diseases
 - Nodular diseases

Some Take-Home Messages

• Different appearances of parenchymal disease is determined by the ability to see the margins of the pulmonary blood vessels.
 - This is helpful for determining disease severity and not forming the differential diagnosis.

Some Take-Home Messages

• Interstitial pattern or groundglass opacity indicates that the lungs are partially aerated
 - Not that disease is necessarily localized to interstitium

• Alveolar pattern or consolidation indicates that the lungs are void of air
 - Not that disease is necessarily localized to the alveolus

• Bronchial or bronchovascular pattern indicates that disease is centered in or around the bronchial wall

Some Take-Home Messages

• Lung lobe size
• Opacity of the lung
• Appearance of increased opacity
 - Macroscopic distribution / shape of lesions
 - Additional signs

Forming the Differential Diagnosis

Macroscopic Distribution of Lung Disease

• Cranioventral
• Caudodorsal
• Diffuse
• Lobar
• Locally extensive — “sublobar”
• Focal
• Multifocal
• Patchy/asymmetric

Macroscopic Distribution of Lung Disease

• Cranioventral
• Caudodorsal-to-diffuse
• Focal
• Multifocal
• Patchy/asymmetric
Cranioventral & Caudodorsal Distributions

Cranioventral Parenchymal Disease
- Pneumonia
 - Aspiration
 - Bronchopneumonia
- Hemorrhage
- Neoplasm
- Lung lobe torsion

Caudodorsal-to-Diffuse Parenchymal Disease
- Cardiogenic pulmonary edema
- Non-cardiogenic pulmonary edema
 - Upper airway obstruction
 - Toxin inhalation
 - ALI (SIRS/ARDS)
 - Near drowning
 - Neurogenic
 - Vasculitis
 - DIC
- Lymphoma

Example of Diffuse Distribution

Diffuse Parenchymal vs. Generalized-Random

Normal | Generalized random | Diffuse

Diffuse Bronchovascular Disease
- All causes of bronchitis
 - Allergic
 - Infectious
 - Immune mediated
- Lymphatic spread of tumor
- Early pulmonary edema
Diffuse Bronchovascular Disease

Bronchocentric Distribution

- Bronchocentric
 - Involves the pulmonary parenchyma around the bronchovascular bundle

Bronchocentric Differential Diagnosis

- Inflammatory
- Neoplasm

Lobar/Sublobar Distributions

Lobar Parenchymal Disease

- Pneumonia
 - Aspiration
- Bronchopneumonia
- Hemorrhage
- Neoplasm
- Lung lobe torsion

Sublobar Parenchymal Disease

- Pneumonia
 - Aspiration
- Bronchopneumonia
- Hemorrhage
- Neoplasm
Aspiration Pneumonia
Left Cranial Lobe (Caudal Part)

Focal Distribution
- Focal
 - Milliary (<1 mm)
 - Nodule (<3 cm)
 - Mass (>3 cm)

Focal/Multifocal Differential Diagnosis
- C.H.A.N.G.
 - Cyst
 - Hematoma
 - Abscess
 - Neoplasm
 - Granuloma

Ossifying Pulmonary Metaplasia

Patchy Distributions
- 1 lesion
- Multiple lesions

Patchy/Asymmetric Distribution
- Does not conform to other distributions
Patchy/Asymmetric Parenchymal Disease

- Trauma
- Infection
- Neoplasia
- Hemorrhage
- Inflammation

Central & Peripheral Distributions

- Central lung (hilar)
- Central lobe
- Peripheral lung
- Peripheral lobe

Hilar

Secondary Pulmonary Lobule Distributions

A. Centrilobular
B. Panlobular
C. Perilobular

Perilobular & Centrilobular Distributions

- Use cautiously
 - Often there is a mix, but we conclude the most severe
- Not the same as an asymmetric distribution
Hemangiosarcoma

- 8-year-old, FS, German Shepherd

Additional Signs

- **Pulmonary**
 - Bullae
 - Cavitary
 - Mineralization
- **Non-pulmonary**
 - Pleural fluid
 - Heart enlargement
 - Lymph node enlargement

Lung Lobe Torsion

Pulmonary Adenocarcinoma

- 12-year-old, MC, DSH

Pulmonary Thromboembolism

- 6-year-old, FS, Labrador retriever

Summary
Summary

• Pulmonary anatomy
• Selecting the imaging examination
• Principles of radiographic interpretation
• The incompletely expanded lung
• The fully expanded lung
• Summary

Key Points

• Pulmonary imaging interpretation
 – Anatomy
 – Pathophysiology
 – Physical principles of imaging modalities
• Pulmonary patterns are a combination of signs
 – Degree of lung expansion
 – The opacity of the lung
 – Appearance of increased opacity
 – Macroscopic distribution of altered opacity
 – Additional signs

Lung Expansion & Opacity

• Size
 – Small
 – Normal
 – Enlarged
• Opacity
 – Decreased
 – Normal
 – Increased

Appearance

• Bronchovascular disease
• Parenchymal disease
• Nodular disease
• Vascular disease

Appearance

• Bronchovascular disease
• Parenchymal disease
 – Groundglass opacity
 – Consolidation
 – Atelectasis
 – Collapse
• Nodular disease
 – Miliiary
 – Nodule
 – Mass
• Vascular disease

How much gas is displaced from the lungs
Distribution

- Cranioventral
- Caudodorsal
- Diffuse
- Lobar
- Sublobar/locally extensive
- Focal
- Multifocal
- Patchy/asymmetric
- Secondary pulmonary lobule

Quantify Disease Severity

- Normal
- Questionable
- Mild
- Moderate
- Severe

Putting It Together

- Severe, cranioventral, lung consolidation
- Large, focal, lung mass
- Large, focal, cavitary lung mass
- Moderate, generalized random, nodules
- Moderate, diffuse, atelectasis
- Mild, diffuse, groundglass pattern
- Mild, diffuse, bronchovascular pattern

Severity, distribution, appearance

Pulmonary Pattern Interpretation

- Definitive diagnosis
- Differential diagnoses
- No diagnosis possible